Skip to main content

Tic Tac Toe Game in Python

🐍 Can be run on Jupyter notebook

#IMPORTING USEFUL LIBRARIES

from IPython.display import clear_output
import random


#DISPLAYING THE TIC TAC TOE

def display_board(board):
    clear_output()
    print(f' {board[7]} | {board[8]} | {board[9]} ')
    print('-----------')
    print(f' {board[4]} | {board[5]} | {board[6]} ')
    print('-----------')
    print(f' {board[1]} | {board[2]} | {board[3]} ')


#GAME BEGINS

def player_input():
    print('NEW GAME | Press 0 to End Game')

#VARIABLE TO STORE THE SPOT PLAYER HAS CHOSEN

    num=0

#VARIABLE TO KEEP A COUNT OF SPOTS FILLED

    count=0

#VARIABLE TO STORE SYMBOL OF PLAYER CURRENTLY PLAYING

    xo='#'

#VARIABLE TO STORE YES OR NO TO PLAY AGAIN

    yn='*'

#RANDOM FIRST TURN OF PLAYERS

    turn=bool(random.getrandbits(1))

#RESETTING BOARD

    test_board = ['#','1','2','3','4','5','6','7','8','9']

#DISPLAYS BOARD

    display_board(test_board)

#STARTS GAME

    while count<9:

#CHECKS IF X HAS ALREADY WON

        if ((test_board[5]=='X' and ((test_board[1]=='X' and test_board[9]=='X') or (test_board[3]=='X' and test_board[7]=='X') or (test_board[2]=='X' and test_board[8]=='X') or (test_board[4]=='X' and test_board[6]=='X'))) or (test_board[1]=='X' and ((test_board[2]=='X' and test_board[3]=='X') or (test_board[4]=='X' and test_board[7]=='X'))) or (test_board[9]=='X' and ((test_board[8]=='X' and test_board[7]=='X') or (test_board[6]=='X' and test_board[3]=='X')))):
            print('X wins')
            yn=input('Want to play again? (Y/N):').upper()
            if yn=='Y':
                player_input()
                break
            else:
                break

#CHECKS IF O HAS ALREADY WON

        elif ((test_board[5]=='O' and ((test_board[1]=='O' and test_board[9]=='O') or (test_board[3]=='O' and test_board[7]=='O') or (test_board[2]=='O' and test_board[8]=='O') or (test_board[4]=='O' and test_board[6]=='O'))) or (test_board[1]=='O' and ((test_board[2]=='O' and test_board[3]=='O') or (test_board[4]=='O' and test_board[7]=='O'))) or (test_board[9]=='O' and ((test_board[8]=='O' and test_board[7]=='O') or (test_board[6]=='O' and test_board[3]=='O')))):
            print('O wins')
            yn=input('Want to play again? (Y/N):').upper()
            if yn=='Y':
                player_input()
                break
            else:
                break

#TAKES THE SPOT A PLAYER CHOOSES

        else:
            if turn:
                num=int(input('Player 1, enter number to place X:'))
                xo='X'
            else:
                num=int(input('Player 2, enter number to place O:'))
                xo='O'

#CHECKS IF SPOT CHOSEN IS CORRECT

            if num<1 or num>9:

#IF PLAYER CHOOSES 0, IT MEANS PLAYER HAS CHOSEN TO QUIT THE GAME

                if num==0:
                    print('Game Over!')
                    break
                else:
                    print('Enter a number between 1 and 9')

#IF ALREADY FILLED SPOT IS CHOSEN AGAIN

            elif test_board[num]=='X' or test_board[num]=='O':
                print('Spot already occupied.')
            else:
                turn=not turn

#FILLS SPOT

                test_board[num]=xo
                display_board(test_board)
                count+=1

#IF ALL 9 SPOTS FILLED, IT SKIPS THE WHILE LOOP AND PRINTS IT'S A TIE

    print('It is a tie.')

#REGAME?

    yn=input('Want to play again? (Y/N):').upper()
    if yn=='Y':
        player_input()

#CALL GAME

player_input()

Comments

Popular posts from this blog

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Machine Learning — Supervised, Unsupervised, and Reinforcement — Explanation with Example

🤖 Let's take an example of machine learning and see how it can be performed in three different ways — Supervised, Unsupervised, and Reinforcement. We want a program to be able to identify apple in pictures Supervised Learning You will create or use a model that takes a set of pictures of apple and it analyses the commonality in those pictures. Now when you show a new picture to the program, it will identify whether it has an apple or not. It can also provide details on how confident is the program about it. Unsupervised Learning In this method, you create or use a model that goes through some images and tries to group them as per the commonalities it observes such as color, shape, size, partern, etc. And now you can go through the groups and inform the program what to call them. So, you can inform the program about the group that is apple mostly. Next time you show a picture, it can tell if an apple is there or not. Reinforcement Learning Here the model you create or...