Skip to main content

Python - Mortgage EMI Calculator

🐍 Using Python, write a program to calculate the monthly payments of a mortgage at a given interest rate. Also figure out how long it will take the user to pay back the loan. For added complexity, add an option for users to select the compounding interval (Yearly, Bi-Yearly, Quarterly, Monthly, Weekly, Daily)

Solution

def emicalculator(loan, interest, interval, emi):

    day_count = 0
    remaining = loan
    if interval[0].lower()=='d':
        while remaining > 0:
            day_count += 1
            remaining += (interest/100)*remaining
            if day_count%30==0:
                remaining -= emi
                if remaining>=loan:
                    print('Either lower interest rate or increase EMI')
                    break
    
    elif interval[0].lower()=='w':
        while remaining > 0:
            day_count += 1
            if day_count%7==0:
                remaining += (interest/100)*remaining
            if day_count%30==0:
                remaining -= emi
                if remaining>=loan:
                    print('Either lower interest rate or increase EMI')
                    break
    elif interval[0].lower()=='m':
        while remaining > 0:
            day_count += 1
            if day_count%30==0:
                remaining += (interest/100)*remaining
                remaining -= emi
                if remaining>=loan:
                    print('Either lower interest rate or increase EMI')
                    break
    elif interval[0].lower()=='q':
        while remaining > 0:
            day_count += 1
            if day_count%90==0:
                remaining += (interest/100)*remaining
            if day_count%30==0:
                remaining -= emi
                if remaining>=loan:
                    print('Either lower interest rate or increase EMI')
                    break
        print(f'Number of days required to return loan amount: {day_count}')
    elif interval[0].lower()=='b':
        while remaining > 0:
            day_count += 1
            if day_count%180==0:
                remaining += (interest/100)*remaining
            if day_count%30==0:
                remaining -= emi
                if remaining>=loan:
                    print('Either lower interest rate or increase EMI')
                    break
    elif interval[0].lower()=='y':
        while remaining > 0:
            day_count += 1
            if day_count%360==0:
                remaining += (interest/100)*remaining
            if day_count%30==0:
                remaining -= emi
                if remaining>=loan:
                    print('Either lower interest rate or increase EMI')
                    break
    else:
        print('Incorrect interval chosen.')
    if remaining<=0:
        return day_count
    else:
        mainfunc()

def mainfunc():
    loan = float(input("Enter Loan Amount: "))
    interest = float(input("Enter Interest Percentage: "))
    interval = input("Enter Interest Interval (daily, weekly, monthly, quarterly, bi-yearly, yearly): ")
    emi = float(input("Enter EMI: "))
    print(emicalculator(loan, interest, interval, emi))
    
if __name__=='__main__':
    mainfunc()

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

683 K Empty Slots

  Approach #1: Insert Into Sorted Structure [Accepted] Intuition Let's add flowers in the order they bloom. When each flower blooms, we check it's neighbors to see if they can satisfy the condition with the current flower. Algorithm We'll maintain  active , a sorted data structure containing every flower that has currently bloomed. When we add a flower to  active , we should check it's lower and higher neighbors. If some neighbor satisfies the condition, we know the condition occurred first on this day. Complexity Analysis Time Complexity (Java):  O(N \log N) O ( N lo g N ) , where  N N  is the length of  flowers . Every insertion and search is  O(\log N) O ( lo g N ) . Time Complexity (Python):  O(N^2) O ( N 2 ) . As above, except  list.insert  is  O(N) O ( N ) . Space Complexity:  O(N) O ( N ) , the size of  active . Approach #2: Min Queue [Accepted] Intuition For each contiguous block ("window") of  k  po...