Skip to main content

Numpy - Multi-dimensional arrays and functions to manipulate them

Numpy offers very efficient functions to manipulate data in multi-dimensional arrays. Here are a few common ones. Use them instead of regular python functions to reduce code length as well as produce efficient and fast programs.
import numpy as np
a = np.array([(1,2,3,4),(3,4,5,6),(7,8,9,10)])
c = np.array([(10,9,8,7),(6,5,4,3),(4,3,2,1)])
print(a)
print("find dimension of array")
print(a.ndim)
print("find byte size of array")
print(a.itemsize)
print("size of entire array")
print(a.size)
print("find data type of elements")
print(a.dtype)
print("shape of array")
print(a.shape)
print("reshape")
b = a.reshape(4,3)
print(b)
print("get value from a place")
print(a[1,2])
print("get values from same column of first two rows")
print(a[0:2,2])
print("equal spacing between a range")
b = np.linspace(0,100,11)
print(b)
print("find max in array")
print(a.max())
print("find min in array")
print(a.min())
print("find total of all elements in array")
print(a.sum())
print("find sum or rows and columns | axis 0 = columns, axis 1 = rows")
print(a.sum(axis=0))
print(a.sum(axis=1))
print("find sqr root of each element")
print(np.sqrt(a))
print("find sqr of each element | matrix multiplication")
print(a*a)
print("find standard deviation")
print(np.std(a))
print("matrix addition")
print(a+a)
print("matrix multiplication")
print(a*5)
print("matrix aubtraction")
print(a-1)
print("matrix division")
print(a/2)
print("stacking horizontally")
print(np.hstack((a,c)))
print("stacking vertically")
print(np.vstack((a,c)))
print("multi-dimensional array to single column | ravel")
print(np.ravel(a))
print("Calculate Exponential")
print(np.exp(a))
print("Calculate Natural Log (log base e)")
print(np.log(a))
print("Calculate Log base 10")
print(np.log10(a))
import matplotlib.pyplot as plt
x = np.arange(0, 3*np.pi, 0.1) # np.pi is 3.14...
y = np.tan(x) # np.sin(x) np.cos(x)
plt.plot(x,y)
plt.show()

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

Python Class to Calculate Distance and Slope of a Line with Coordinates as Input

🐍  Can be run on Jupyter Notebook #CLASS DESIGNED TO CREATE OBJECTS THAT TAKES COORDINATES AND CALCULATES DISTANCE AND SLOPE class Line:     def __init__(self,coor1,coor2):         self.coor1=coor1         self.coor2=coor2 #FUNCTION CALCULATES DISTANCE     def distance(self):         return ((self.coor2[0]-self.coor1[0])**2+(self.coor2[1]-self.coor1[1])**2)**0.5 #FUNCTION CALCULATES SLOPE         def slope(self):         return (self.coor2[1]-self.coor1[1])/(self.coor2[0]-self.coor1[0]) #DEFINING COORDINATES coordinate1 = (3,2) coordinate2 = (8,10) #CREATING OBJECT OF LINE CLASS li = Line(coordinate1,coordinate2) #CALLING DISTANCE FUNCTION li.distance() #CALLING SLOPE FUNCTION li.slope()