Skip to main content

Python - How to create a Graph Data Structure?

Create a Graph Data Structure.
Run the code here: https://repl.it/@VinitKhandelwal/Graph
class Graph:

def __init__(self):
self.numberOfNodes = 0
self.adjacentDict = {}
def addVertex(self, node):
self.adjacentDict[node] = []
self.numberOfNodes += 1
def addEdge(self, node1, node2):
self.adjacentDict[node1].append(node2)
self.adjacentDict[node2].append(node1)

def showConnections(self):
for key, value in self.adjacentDict.items():
print(f"{key}:{value}")

obj = Graph()
obj.addVertex(0)
obj.addVertex(1)
obj.addVertex(2)
obj.addVertex(3)
obj.addVertex(4)
obj.addVertex(5)
obj.addVertex(6)
obj.addEdge(3, 1)
obj.addEdge(3, 4)
obj.addEdge(4, 2)
obj.addEdge(4, 5)
obj.addEdge(1, 2)
obj.addEdge(1, 0)
obj.addEdge(0, 2)
obj.addEdge(5, 6)
obj.showConnections()
OUTPUT
0:[1, 2]
1:[3, 2, 0]
2:[4, 1, 0]
3:[1, 4]
4:[3, 2, 5]
5:[4, 6]
6:[5]

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

Python Class to Calculate Distance and Slope of a Line with Coordinates as Input

🐍  Can be run on Jupyter Notebook #CLASS DESIGNED TO CREATE OBJECTS THAT TAKES COORDINATES AND CALCULATES DISTANCE AND SLOPE class Line:     def __init__(self,coor1,coor2):         self.coor1=coor1         self.coor2=coor2 #FUNCTION CALCULATES DISTANCE     def distance(self):         return ((self.coor2[0]-self.coor1[0])**2+(self.coor2[1]-self.coor1[1])**2)**0.5 #FUNCTION CALCULATES SLOPE         def slope(self):         return (self.coor2[1]-self.coor1[1])/(self.coor2[0]-self.coor1[0]) #DEFINING COORDINATES coordinate1 = (3,2) coordinate2 = (8,10) #CREATING OBJECT OF LINE CLASS li = Line(coordinate1,coordinate2) #CALLING DISTANCE FUNCTION li.distance() #CALLING SLOPE FUNCTION li.slope()