Skip to main content

Python - Singly LinkedList That Allows Append, Prepend, Insert at Index, Pop First, Pop Last, Delete at Index, Delete Value, and View LinkedList

Singly LinkedList in Python that allows append, prepend, insert at index, delete first element, delete last element, delete from index, delete a value,  and view LinkedList operations
Run the code here: https://repl.it/@VinitKhandelwal/SinglyLinkedList
class SinglyLinkedList:

def __init__(self):
self.reset()
def reset(self):
self.length = 0
self.head = None
self.tail = None

def first_node(self, new_node):
self.head = new_node
self.tail = self.head
self.length += 1

def append_non_first(self, new_node):
self.tail.front_pointer = new_node
self.tail = new_node
self.length += 1

def prepend_non_first(self, new_node):
new_node.front_pointer = self.head
self.head = new_node
self.length += 1

def append(self, value):
new_node = Node(value)
if self.length == 0:
self.first_node(new_node)
else:
self.append_non_first(new_node)

def prepend(self, value):
new_node = Node(value)
if self.length == 0:
self.first_node(new_node)
else:
self.prepend_non_first(new_node)

def insert_at(self, index, value):
new_node = Node(value)
if self.length == 0:
self.first_node(new_node)
elif index > self.length+1:
print("Index not available. Appended at the end.")
self.append_non_first(new_node)
else:
temp = self.head
if index == 0:
self.prepend_non_first(new_node)
elif index == self.length+1:
append_non_first(new_node)
else:
for i in range(0, index):
prev_temp = temp
temp = temp.front_pointer
prev_temp.front_pointer = new_node
new_node.front_pointer = temp
self.length += 1

def pop_front_non_first(self):
self.head = self.head.front_pointer
self.head.back_pointer = None
self.length -= 1

def pop_last_non_first(self):
prev_temp = self.head
for i in range(1, self.length):
temp = prev_temp.front_pointer
prev_temp = temp
prev_temp.front_pointer = None
self.length -= 1

def popfirst(self):
if self.length < 2:
self.reset()
else:
self.pop_front_non_first()

def poplast(self):
if self.length < 2:
self.reset()
else:
self.pop_last_non_first()

def delete_at(self, index):
if self.length < 2:
self.reset()
elif index == 0:
self.pop_front_non_first()
elif index == self.length-1:
self.pop_last_non_first()
elif index < self.length and index > 0:
temp = self.head
for i in range(0, index):
prev_temp = temp
temp = prev_temp.front_pointer
prev_temp.front_pointer = temp.front_pointer
self.length -= 1

def delete(self, value):
if self.length < 2:
if self.head.value == value:
self.reset()
else:
if self.head.value == value:
self.pop_front_non_first()
if self.tail.value == value:
self.pop_last_non_first()
prev_temp = self.head
for i in range(1, self.length-1):
temp = prev_temp.front_pointer
if temp.value == value:
prev_temp.front_pointer = temp.front_pointer
self.length -= 1
prev_temp = temp
def view(self):
print("View")
temp = None
arr = []
for i in range(0, self.length):
if temp == None:
temp = self.head
else:
temp = temp.front_pointer
if temp is not None:
arr.append(temp.value)
print(arr)


class Node:
def __init__(self, value, back_pointer=None, front_pointer=None):
self.value = value
self.front_pointer = front_pointer

obj = SinglyLinkedList()
obj.view()
obj.prepend(10)
obj.view()
obj.append(1)
obj.view()
obj.append(10)
obj.view()
obj.prepend(2)
obj.view()
obj.insert_at(3, 7)
obj.view()
obj.prepend(3)
obj.view()
obj.prepend(10)
obj.view()
obj.prepend(4)
obj.view()
obj.prepend(10)
obj.view()
obj.delete(10)
obj.view()
obj.delete_at(2)
obj.view()
obj.popfirst()
obj.view()
obj.poplast()
obj.view()
OUTPUT
View
[]
View
[10]
View
[10, 1]
View
[10, 1, 10]
View
[2, 10, 1, 10]
View
[2, 10, 1, 7, 10]
View
[3, 2, 10, 1, 7, 10]
View
[10, 3, 2, 10, 1, 7, 10]
View
[4, 10, 3, 2, 10, 1, 7, 10]
View
[10, 4, 10, 3, 2, 10, 1, 7, 10]
View
[4, 3, 2, 1, 7]
View
[4, 3, 1, 7]
View
[3, 1, 7]
View
[3, 1]

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

Python Class to Calculate Distance and Slope of a Line with Coordinates as Input

🐍  Can be run on Jupyter Notebook #CLASS DESIGNED TO CREATE OBJECTS THAT TAKES COORDINATES AND CALCULATES DISTANCE AND SLOPE class Line:     def __init__(self,coor1,coor2):         self.coor1=coor1         self.coor2=coor2 #FUNCTION CALCULATES DISTANCE     def distance(self):         return ((self.coor2[0]-self.coor1[0])**2+(self.coor2[1]-self.coor1[1])**2)**0.5 #FUNCTION CALCULATES SLOPE         def slope(self):         return (self.coor2[1]-self.coor1[1])/(self.coor2[0]-self.coor1[0]) #DEFINING COORDINATES coordinate1 = (3,2) coordinate2 = (8,10) #CREATING OBJECT OF LINE CLASS li = Line(coordinate1,coordinate2) #CALLING DISTANCE FUNCTION li.distance() #CALLING SLOPE FUNCTION li.slope()