Skip to main content

Python - Sort a list in ascending and descending order without using in-built function and in the most efficient way

This piece of logic goes through a list how our eyes would go though it to sort it in ascending and descending order.
class Sorta:

def __init__(self, a):

self.a = a
def sortascend(self):

print("Ascending Before: {}".format(self.a))

index = 1 # to track upto what have we checked
while index < len(self.a): #while runs till index reaches the end of array

if self.a[index] < self.a[index-1]: # if not ascending makes ascending
temp = self.a[index]
self.a[index] = self.a[index-1]
self.a[index-1] = temp
bool1 = True
index2 = index
while bool1: # runs backwards till descending pairs are encountered
index2 -= 1
if self.a[index2] < self.a[index2-1]: # if not ascending makes ascending
temp = self.a[index2]
self.a[index2] = self.a[index2-1]
self.a[index2-1] = temp
else: # else gets out of while loop
bool1 = False
index += 1 # moves to next index

print("Ascending After: {}".format(self.a))

def sortdescend(self):

print("Descending Before: {}".format(self.a))

index = 1 # to track upto what have we checked
while index < len(self.a): #while runs till index reaches the end of array

if self.a[index] > self.a[index-1]: # if not ascending makes ascending
temp = self.a[index]
self.a[index] = self.a[index-1]
self.a[index-1] = temp
bool1 = True
index2 = index
while bool1: # runs backwards till descending pairs are encountered
index2 -= 1
if self.a[index2] > self.a[index2-1] and index2 > 0: # if not ascending makes ascending
temp = self.a[index2]
self.a[index2] = self.a[index2-1]
self.a[index2-1] = temp
else: # else gets out of while loop
bool1 = False
index += 1 # moves to next index

print("Descending After: {}".format(self.a))

a = [1,4,8,3,5,2,4,2,7,6,9,5,7]
obj = Sorta(a)
obj.sortascend()
obj.sortdescend()
OUTPUT
Ascending Before: [1, 4, 8, 3, 5, 2, 4, 2, 7, 6, 9, 5, 7]
Ascending After: [1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9]
Descending Before: [1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9]
Descending After: [9, 8, 7, 7, 6, 5, 5, 4, 4, 3, 2, 2, 1]

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

683 K Empty Slots

  Approach #1: Insert Into Sorted Structure [Accepted] Intuition Let's add flowers in the order they bloom. When each flower blooms, we check it's neighbors to see if they can satisfy the condition with the current flower. Algorithm We'll maintain  active , a sorted data structure containing every flower that has currently bloomed. When we add a flower to  active , we should check it's lower and higher neighbors. If some neighbor satisfies the condition, we know the condition occurred first on this day. Complexity Analysis Time Complexity (Java):  O(N \log N) O ( N lo g N ) , where  N N  is the length of  flowers . Every insertion and search is  O(\log N) O ( lo g N ) . Time Complexity (Python):  O(N^2) O ( N 2 ) . As above, except  list.insert  is  O(N) O ( N ) . Space Complexity:  O(N) O ( N ) , the size of  active . Approach #2: Min Queue [Accepted] Intuition For each contiguous block ("window") of  k  po...