Skip to main content

Built-in Plots in Pandas - Python

There are several plot types built-in to pandas, most of them statistical plots by nature:
  • df.plot.area
  • df.plot.barh
  • df.plot.density
  • df.plot.hist
  • df.plot.line
  • df.plot.scatter
  • df.plot.bar
  • df.plot.box
  • df.plot.hexbin
  • df.plot.kde
  • df.plot.pie
You can also just call df.plot(kind='hist') or replace that kind argument with any of the key terms shown in the list above (e.g. 'box','barh', etc..)

Area Plot

df2.plot.area()
Area Plot

Bar Plot

df2.plot.bar()
Bar Plot

Stacked Bar Plot

df2.plot.bar(stacked=True)
Stacked Bar Plot

Histogram Plot

df1['A'].plot.hist()
Histogram

Line Plot

df1.plot.line(x=df1.index,y='B',figsize=(12,3),lw=1)
Line Plot

Scatter Plot

df1.plot.scatter(x='A',y='B')
Scattered Plot

Scatter Plot with three variables

df1.plot.scatter(x='A',y='B',c='C')
Scattered Plot with three varibales

Scatter Plot with third variable indicated by size

df1.plot.scatter(x='A',y='B',s=df1['C']*200)
Scattered Plot with size

Box Plot

df2.plot.box()
Box Plot

Hexagonal Bin Plot

df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
df.plot.hexbin(x='a',y='b',gridsize=25)
Hexagonal Bin Plot

Kernel Density Estimation (KDE) Plot

df2['a'].plot.kde()
KDE Plot

Density Plot

df2.plot.density()
Density Plot

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

Python Class to Calculate Distance and Slope of a Line with Coordinates as Input

🐍  Can be run on Jupyter Notebook #CLASS DESIGNED TO CREATE OBJECTS THAT TAKES COORDINATES AND CALCULATES DISTANCE AND SLOPE class Line:     def __init__(self,coor1,coor2):         self.coor1=coor1         self.coor2=coor2 #FUNCTION CALCULATES DISTANCE     def distance(self):         return ((self.coor2[0]-self.coor1[0])**2+(self.coor2[1]-self.coor1[1])**2)**0.5 #FUNCTION CALCULATES SLOPE         def slope(self):         return (self.coor2[1]-self.coor1[1])/(self.coor2[0]-self.coor1[0]) #DEFINING COORDINATES coordinate1 = (3,2) coordinate2 = (8,10) #CREATING OBJECT OF LINE CLASS li = Line(coordinate1,coordinate2) #CALLING DISTANCE FUNCTION li.distance() #CALLING SLOPE FUNCTION li.slope()