Skip to main content

Learn Numpy by Examples

Examples of functions made available by numpy.
Run the code here: https://repl.it/@VinitKhandelwal/numpy
import numpy as np

list1 = [1,2,3]
print(list1)
print(np.array(list1))

list2 = [[1,2,3],[4,5,6],[7,8,9]]
print(list2)
print(np.array(list2))

print(np.arange(0,10))
print(np.arange(0,10,2))
print(np.zeros(5))
print(np.zeros((5,5)))
print(np.ones(3))
print(np.ones((3,3)))
print(np.linspace(0,99,10))
print(np.eye(4))
print(np.random.rand(5))
print(np.random.rand(5,5))
print(np.random.randn(2,2))
print(np.random.randint(1,100, 10))

arr1 = np.arange(0, 25)
print(arr1)
print(arr1.reshape(5,5))
randarr1 = np.random.randint(0,100,10)
print(randarr1)
print(randarr1.min())
print(randarr1.max())
print(randarr1.argmin())
print(randarr1.argmax())
print(arr1.shape)
print(arr1[2:6])
print(arr1[2:])
print(arr1[:6])
arr1 = arr1.reshape(5,5)
print(arr1.shape)
print(arr1.dtype)
print(arr1[1:3])
arr1[4][1:4] = 100
print(arr1)
arr1 = np.arange(0,25)
print(arr1)
arr1[10:20] = 100
print(arr1)
arr1 = np.arange(0,25)
print(arr1)
slice_of_arr1 = arr1[10:15]
print(slice_of_arr1)
slice_of_arr1[:] = 99
print(slice_of_arr1)

print(f"Printing arr1 {arr1}")
arr1_copy = arr1.copy()
print(f"Copy of arr1 {arr1_copy}")
arr1_copy[:] = 101
print(f"Copy after broadcasting {arr1_copy}")

arr_2d = [[1,2,3],[4,5,6],[7,8,9]]
print(arr_2d)
arr_2d = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(arr_2d)
print(arr_2d[1])
print(arr_2d[1][2])
print(arr_2d[1,2])
print(arr_2d[1][1:3])
print(arr_2d[1:,1:])

arr1 = np.arange(0,10)
print(arr1)
bool_arr1 = arr1 > 5
print(bool_arr1)
arr2 = arr1[bool_arr1]
print(arr2)
print(arr1[arr1<5])

arr_2d = np.arange(0,50).reshape(5,10)
print(arr_2d)
print(arr_2d[2:4,5:7])

arr1 = np.arange(0,11)
print(arr1)
print(arr1+arr1)
print(arr1-arr1)
print(arr1*arr1)
print(arr1/arr1)
print(1+arr1)
print(arr1**arr1)
print(np.sqrt(arr1))
print(np.exp(arr1))
print(np.max(arr1))
print(np.min(arr1))
print(np.sin(arr1))
print(np.log(arr1))
OUTPUT
[1, 2, 3]
[1 2 3]
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
[[1 2 3]
 [4 5 6]
 [7 8 9]]
[0 1 2 3 4 5 6 7 8 9]
[0 2 4 6 8]
[0. 0. 0. 0. 0.]
[[0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]]
[1. 1. 1.]
[[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]
[ 0. 11. 22. 33. 44. 55. 66. 77. 88. 99.]
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]
[0.58536131 0.121866   0.78973481 0.36854691 0.48029132]
[[0.05123787 0.53955972 0.59739976 0.8228303  0.566202  ]
 [0.99085132 0.68906901 0.05258071 0.9829009  0.2779436 ]
 [0.850794   0.19051684 0.63237285 0.50288235 0.90044353]
 [0.23280357 0.71815456 0.07412001 0.29499834 0.09095108]
 [0.77565526 0.53934636 0.92837746 0.65878371 0.8373636 ]]
[[-1.03635449  1.00597245]
 [-1.24290427  1.6505177 ]]
[57 40 98 88  8 96 96 65 52 90]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24]
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
[51 44 57 66 80 78 75 50 83 50]
44
83
1
8
(25,)
[2 3 4 5]
[ 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
[0 1 2 3 4 5]
(5, 5)
int64
[[ 5  6  7  8  9]
 [10 11 12 13 14]]
[[  0   1   2   3   4]
 [  5   6   7   8   9]
 [ 10  11  12  13  14]
 [ 15  16  17  18  19]
 [ 20 100 100 100  24]]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24]
[  0   1   2   3   4   5   6   7   8   9 100 100 100 100 100 100 100 100
 100 100  20  21  22  23  24]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24]
[10 11 12 13 14]
[99 99 99 99 99]
Printing arr1 [ 0  1  2  3  4  5  6  7  8  9 99 99 99 99 99 1516 17 18 19 20 21 22 23
 24]
Copy of arr1 [ 0  1  2  3  4  5  6  7  8  9 99 99 99 99 99 15 16 17 18 19 20 21 22 23
 24]
Copy after broadcasting [101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101
 101 101 101 101 101 101 101]
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
[[1 2 3]
 [4 5 6]
 [7 8 9]]
[4 5 6]
6
6
[5 6]
[[5 6]
 [8 9]]
[0 1 2 3 4 5 6 7 8 9]
[False False False False False False  True  True  True  True]
[6 7 8 9]
[0 1 2 3 4]
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]]
[[25 26]
 [35 36]]
[ 0  1  2  3  4  5  6  7  8  9 10]
[ 0  2  4  6  8 10 12 14 16 18 20]
[0 0 0 0 0 0 0 0 0 0 0]
[  0   1   4   9  16  25  36  49  64  81 100]
main.py:87: RuntimeWarning: invalid value encountered in true_divide
  print(arr1/arr1)
[nan  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
[ 1  2  3  4  5  6  7  8  9 10 11]
[          1           1           4          27         256     3125
       46656      823543    16777216   387420489 10000000000]
[0.         1.         1.41421356 1.73205081 2.         2.23606798
 2.44948974 2.64575131 2.82842712 3.         3.16227766]
[1.00000000e+00 2.71828183e+00 7.38905610e+00 2.00855369e+01
 5.45981500e+01 1.48413159e+02 4.03428793e+02 1.09663316e+03
 2.98095799e+03 8.10308393e+03 2.20264658e+04]
10
0
[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025  -0.95892427
 -0.2794155   0.6569866   0.98935825  0.41211849 -0.54402111]
main.py:95: RuntimeWarning: divide by zero encountered in log
  print(np.log(arr1))
[      -inf 0.         0.69314718 1.09861229 1.38629436 1.60943791
 1.79175947 1.94591015 2.07944154 2.19722458 2.30258509]

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

683 K Empty Slots

  Approach #1: Insert Into Sorted Structure [Accepted] Intuition Let's add flowers in the order they bloom. When each flower blooms, we check it's neighbors to see if they can satisfy the condition with the current flower. Algorithm We'll maintain  active , a sorted data structure containing every flower that has currently bloomed. When we add a flower to  active , we should check it's lower and higher neighbors. If some neighbor satisfies the condition, we know the condition occurred first on this day. Complexity Analysis Time Complexity (Java):  O(N \log N) O ( N lo g N ) , where  N N  is the length of  flowers . Every insertion and search is  O(\log N) O ( lo g N ) . Time Complexity (Python):  O(N^2) O ( N 2 ) . As above, except  list.insert  is  O(N) O ( N ) . Space Complexity:  O(N) O ( N ) , the size of  active . Approach #2: Min Queue [Accepted] Intuition For each contiguous block ("window") of  k  po...