Here you can understand what Pandas Series is.
Run the code here: https://repl.it/@VinitKhandelwal/pandas-series
[10, 20, 30]
[10 20 30]
{'a': 10, 'b': 20, 'c': 30}
0 10
1 20
2 30
dtype: int64
a 10
b 20
c 30
dtype: int64
a 10
b 20
c 30
dtype: int64
0 10
1 20
2 30
dtype: int64
a 10
b 20
c 30
dtype: int64
a 10
b 20
c 30
dtype: int64
0 a
1 b
2 c
dtype: object
0 <built-in function sum>
1 <built-in function print>
2 <built-in function len>
dtype: object
India 1
Pakistan 2
Nepal 3
Bhutan 4
dtype: int64
India 1
Pakistan 2
Sri Lanka 5
Bhutan 4
dtype: int64
4
0 a
1 b
2 c
dtype: object
b
Bhutan 8.0
India 2.0
Nepal NaN
Pakistan 4.0
Sri Lanka NaN
dtype: float64
Run the code here: https://repl.it/@VinitKhandelwal/pandas-series
import numpy as np
import pandas as pd
labels = ['a', 'b', 'c']
my_data = [10, 20, 30]
arr = np.array(my_data)
d = {'a':10, 'b':20, 'c':30}
print(labels)
print(my_data)
print(arr)
print(d)
print(pd.Series(data = my_data))
print(pd.Series(data = my_data, index = labels))
print(pd.Series(my_data, labels))
print(pd.Series(arr))
print(pd.Series(arr, labels))
print(pd.Series(d))
print(pd.Series(labels))
print(pd.Series(data = [sum, print, len]))
ser1 = pd.Series([1,2,3,4],['India', 'Pakistan', 'Nepal', 'Bhutan'])
print(ser1)
ser2 = pd.Series([1,2,5,4],['India', 'Pakistan', 'Sri Lanka', 'Bhutan'])
print(ser2)
print(ser1['Bhutan'])
ser3 = pd.Series(labels)
print(ser3)
print(ser3[1])
print(ser1+ser2)
OUTPUT
['a', 'b', 'c'][10, 20, 30]
[10 20 30]
{'a': 10, 'b': 20, 'c': 30}
0 10
1 20
2 30
dtype: int64
a 10
b 20
c 30
dtype: int64
a 10
b 20
c 30
dtype: int64
0 10
1 20
2 30
dtype: int64
a 10
b 20
c 30
dtype: int64
a 10
b 20
c 30
dtype: int64
0 a
1 b
2 c
dtype: object
0 <built-in function sum>
1 <built-in function print>
2 <built-in function len>
dtype: object
India 1
Pakistan 2
Nepal 3
Bhutan 4
dtype: int64
India 1
Pakistan 2
Sri Lanka 5
Bhutan 4
dtype: int64
4
0 a
1 b
2 c
dtype: object
b
Bhutan 8.0
India 2.0
Nepal NaN
Pakistan 4.0
Sri Lanka NaN
dtype: float64
Comments
Post a Comment