Skip to main content

What is Pandas Series with Examples

Here you can understand what Pandas Series is.
Run the code here: https://repl.it/@VinitKhandelwal/pandas-series
import numpy as np
import pandas as pd

labels = ['a', 'b', 'c']
my_data = [10, 20, 30]
arr = np.array(my_data)
d = {'a':10, 'b':20, 'c':30}

print(labels)
print(my_data)
print(arr)
print(d)

print(pd.Series(data = my_data))
print(pd.Series(data = my_data, index = labels))
print(pd.Series(my_data, labels))
print(pd.Series(arr))
print(pd.Series(arr, labels))
print(pd.Series(d))
print(pd.Series(labels))
print(pd.Series(data = [sum, print, len]))
ser1 = pd.Series([1,2,3,4],['India', 'Pakistan', 'Nepal', 'Bhutan'])
print(ser1)
ser2 = pd.Series([1,2,5,4],['India', 'Pakistan', 'Sri Lanka', 'Bhutan'])
print(ser2)
print(ser1['Bhutan'])
ser3 = pd.Series(labels)
print(ser3)
print(ser3[1])
print(ser1+ser2)

OUTPUT

['a', 'b', 'c']
[10, 20, 30]
[10 20 30]
{'a': 10, 'b': 20, 'c': 30}
0    10
1    20
2    30
dtype: int64
a    10
b    20
c    30
dtype: int64
a    10
b    20
c    30
dtype: int64
0    10
1    20
2    30
dtype: int64
a    10
b    20
c    30
dtype: int64
a    10
b    20
c    30
dtype: int64
0    a
1    b
2    c
dtype: object
0      <built-in function sum>
1    <built-in function print>
2      <built-in function len>
dtype: object
India       1
Pakistan    2
Nepal       3
Bhutan      4
dtype: int64
India        1
Pakistan     2
Sri Lanka    5
Bhutan       4
dtype: int64
4
0    a
1    b
2    c
dtype: object
b
Bhutan       8.0
India        2.0
Nepal        NaN
Pakistan     4.0
Sri Lanka    NaN
dtype: float64

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

Python Class to Calculate Distance and Slope of a Line with Coordinates as Input

🐍  Can be run on Jupyter Notebook #CLASS DESIGNED TO CREATE OBJECTS THAT TAKES COORDINATES AND CALCULATES DISTANCE AND SLOPE class Line:     def __init__(self,coor1,coor2):         self.coor1=coor1         self.coor2=coor2 #FUNCTION CALCULATES DISTANCE     def distance(self):         return ((self.coor2[0]-self.coor1[0])**2+(self.coor2[1]-self.coor1[1])**2)**0.5 #FUNCTION CALCULATES SLOPE         def slope(self):         return (self.coor2[1]-self.coor1[1])/(self.coor2[0]-self.coor1[0]) #DEFINING COORDINATES coordinate1 = (3,2) coordinate2 = (8,10) #CREATING OBJECT OF LINE CLASS li = Line(coordinate1,coordinate2) #CALLING DISTANCE FUNCTION li.distance() #CALLING SLOPE FUNCTION li.slope()