Skip to main content

ErrorBoundary in React

Create a folder named ErrorBoundary. Inside add a file name ErrorBoundary.js Inside ErrorBoundary.js add the following
import React, { Component } from 'react';

class ErrorBoundary extends Component {
    state = {
        hasError: false,
        errorMessage: ''
    }
    componentDidCatch = (error, info) => {
        this.setState(
            {
                hasError: true, 
                errorMessage: error
            }
        );
    }

    render() {
        if (this.state.hasError) {
            return (
                <div>
                    <h1>Something is Wrong!</h1>
                    <p>{this.state.errorMessage}</p>
                </div>
            );
        } else {
            return this.props.children
        }
    }
}

export default ErrorBoundary;
This creates a component to show if error is encountered in production. This is a higher order component that is used to wrap around other components. So let's wrap around a component now. In App.js import ErrorBoundary component
import ErrorBoundary from './ErrorBoundary/ErrorBoundary';
In the below example we show a component if showPersons condition is true. So we wrap ErrorBoundary around Person component and add unique key to it for react to use it.
if(this.state.showPersons) {
      persons = (
        <div>
          {this.state.persons.map((person, index) => {
            return <ErrorBoundary key={person.id}>
              <Person 
              click={() => this.deletePersonHandler(index)}
              companyName={person.companyName} 
              designation={person.designation}
              changed={(event) => this.nameChangedHandler(event, person.id)} >Duration: {person.duration}
              </Person>
              </ErrorBoundary>
          })}
        </div>
      );
      btnClass = classes.Red;
    }
That is how ErrorBoundary is used. You would not see it's effect in development output but only in production.

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

683 K Empty Slots

  Approach #1: Insert Into Sorted Structure [Accepted] Intuition Let's add flowers in the order they bloom. When each flower blooms, we check it's neighbors to see if they can satisfy the condition with the current flower. Algorithm We'll maintain  active , a sorted data structure containing every flower that has currently bloomed. When we add a flower to  active , we should check it's lower and higher neighbors. If some neighbor satisfies the condition, we know the condition occurred first on this day. Complexity Analysis Time Complexity (Java):  O(N \log N) O ( N lo g N ) , where  N N  is the length of  flowers . Every insertion and search is  O(\log N) O ( lo g N ) . Time Complexity (Python):  O(N^2) O ( N 2 ) . As above, except  list.insert  is  O(N) O ( N ) . Space Complexity:  O(N) O ( N ) , the size of  active . Approach #2: Min Queue [Accepted] Intuition For each contiguous block ("window") of  k  po...