Skip to main content

1. Two Sum

 

Solution


Approach 1: Brute Force

The brute force approach is simple. Loop through each element x and find if there is another value that equals to target - x.

Complexity Analysis

  • Time complexity : O(n^2). For each element, we try to find its complement by looping through the rest of array which takes O(n) time. Therefore, the time complexity is O(n^2).

  • Space complexity : O(1).


Approach 2: Two-pass Hash Table

To improve our run time complexity, we need a more efficient way to check if the complement exists in the array. If the complement exists, we need to look up its index. What is the best way to maintain a mapping of each element in the array to its index? A hash table.

We reduce the look up time from O(n) to O(1) by trading space for speed. A hash table is built exactly for this purpose, it supports fast look up in near constant time. I say "near" because if a collision occurred, a look up could degenerate to O(n) time. But look up in hash table should be amortized O(1) time as long as the hash function was chosen carefully.

A simple implementation uses two iterations. In the first iteration, we add each element's value and its index to the table. Then, in the second iteration we check if each element's complement (target - nums[i]) exists in the table. Beware that the complement must not be nums[i] itself!

Complexity Analysis:

  • Time complexity : O(n). We traverse the list containing n elements exactly twice. Since the hash table reduces the look up time to O(1), the time complexity is O(n).

  • Space complexity : O(n). The extra space required depends on the number of items stored in the hash table, which stores exactly n elements.


Approach 3: One-pass Hash Table

It turns out we can do it in one-pass. While we iterate and inserting elements into the table, we also look back to check if current element's complement already exists in the table. If it exists, we have found a solution and return immediately.

Complexity Analysis:

  • Time complexity : O(n). We traverse the list containing n elements only once. Each look up in the table costs only O(1) time.

  • Space complexity : O(n). The extra space required depends on the number of items stored in the hash table, which stores at most n elements.

Comments

Popular posts from this blog

Python - List - Append, Count, Extend, Index, Insert, Pop, Remove, Reverse, Sort

🐍 Advance List List is widely used and it's functionalities are heavily useful. Append Adds one element at the end of the list. Syntax list1.append(value) Input l1 = [1, 2, 3] l1.append(4) l1 Output [1, 2, 3, 4] append can be used to add any datatype in a list. It can even add list inside list. Caution: Append does not return anything. It just appends the list. Count .count(value) counts the number of occurrences of an element in the list. Syntax list1.count(value) Input l1 = [1, 2, 3, 4, 3] l1.count(3) Output 2 It returns 0 if the value is not found in the list. Extend .count(value) counts the number of occurrences of an element in the list. Syntax list1.extend(list) Input l1 = [1, 2, 3] l1.extend([4, 5]) Output [1, 2, 3, 4, 5] If we use append, entire list will be added to the first list like one element. Extend, i nstead of considering a list as one element, it joins the two lists one after other. Append works in the following way. Input l1 = [1, 2, 3] l1.append([4, 5]) Output...

Difference between .exec() and .execPopulate() in Mongoose?

Here I answer what is the difference between .exec() and .execPopulate() in Mongoose? .exec() is used with a query while .execPopulate() is used with a document Syntax for .exec() is as follows: Model.query() . populate ( 'field' ) . exec () // returns promise . then ( function ( document ) { console . log ( document ); }); Syntax for .execPopulate() is as follows: fetchedDocument . populate ( 'field' ) . execPopulate () // returns promise . then ( function ( document ) { console . log ( document ); }); When working with individual document use .execPopulate(), for model query use .exec(). Both returns a promise. One can do without .exec() or .execPopulate() but then has to pass a callback in populate.

683 K Empty Slots

  Approach #1: Insert Into Sorted Structure [Accepted] Intuition Let's add flowers in the order they bloom. When each flower blooms, we check it's neighbors to see if they can satisfy the condition with the current flower. Algorithm We'll maintain  active , a sorted data structure containing every flower that has currently bloomed. When we add a flower to  active , we should check it's lower and higher neighbors. If some neighbor satisfies the condition, we know the condition occurred first on this day. Complexity Analysis Time Complexity (Java):  O(N \log N) O ( N lo g N ) , where  N N  is the length of  flowers . Every insertion and search is  O(\log N) O ( lo g N ) . Time Complexity (Python):  O(N^2) O ( N 2 ) . As above, except  list.insert  is  O(N) O ( N ) . Space Complexity:  O(N) O ( N ) , the size of  active . Approach #2: Min Queue [Accepted] Intuition For each contiguous block ("window") of  k  po...